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Abstract. The stability of colliding Bose-Einstein condensates is investigated. A set of coupled Gross-
Pitaevskii equations is thus considered, and analyzed via a perturbative approach. No assumption is made
on the signs (or magnitudes) of the relevant parameters like the scattering lengths and the coupling
coefficients. The formalism is therefore valid for asymmetric as well as symmetric coupled condensate wave
states. A new set of explicit criteria is derived and analyzed. An extended instability region, in addition
to an enhanced instability growth rate, is predicted for unstable two component bosons, as compared to
the individual (uncoupled) state.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems –
67.40.Vs Vortices and turbulence – 67.57.De Superflow and hydrodynamics

1 Introduction

Bose-Einstein condensation of dilute gases in traps has
attracted a great deal of interest recently, as witnessed
in recent reviews and monographs [1,2]. Mean-field theory
provides a consistent framework for the modeling of the
principal characteristics of condensation and elucidates
the role of the interactions between the particles. A generic
theoretical model widely employed involves the Gross-
Pitaevskii equation, which bears the form of a nonlinear
Schrödinger-type equation, taking into account boson in-
teractions (related to a scattering length a), in addition to
the confinement potential imposed on the Bose-Einstein
condensates (BECs) in a potential trap. The scattering
length a, although initially taken to be positive (account-
ing for repulsive interactions and prescribing condensate
stability), has later been sign-inverted to negative (attrac-
tive interaction) via Feshbach resonance, in appropriately
designed experiments. This allowed for the prediction of
BEC state instability, eventually leading to wave collapse,
which is only possible in the attractive case (a < 0) [1].
As expected from previous know-how on problems mod-
elled by generic nonlinear Schrödinger-type equations (in
one or more dimensions), the analysis of BEC dynamics
revealed the possibility for the existence of collective ex-
citations including bright- (for a < 0) and dark- (holes,
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for a > 0) type envelope excitations, as well as vortices,
which were quite recently observed in laboratories [3–5].
The evolution of coupled (“colliding”) BEC wavepackets
was recently considered in theoretical and experimental in-
vestigations [6–8]. Pairs of nonlinearly coupled BECs are
thus modeled via coupled Gross-Pitaevskii equations, in-
volving extra coupling terms whose sign and/or magnitude
are a priori not prescribed. Although theoretical modeling,
quite naturally, first involved symmetric pairs of (identi-
cal) BECs, for simplicity, evidence from experiments sug-
gests that asymmetric boson pairs deserve attention [9].

In this paper, we investigate the stability of a nonlin-
early coupled BEC pair, from first principles. Both BECs
are assumed to lie in the ground state, for simplicity, al-
though no other assumption is made on the sign and/or
magnitude of the relevant physical parameters. We shall
derive a set of general criteria for the stability of BEC
pairs (allowing for asymmetry in the wave functions).

2 The formalism

The wave-functions ψ1 and ψ2 of two nonlinearly interact-
ing BECs evolve according to the coupled Gross-Pitaevskii
equations (CGPEs)
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where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace
operator (a three-dimensional Cartesian geometry is con-
sidered, for clarity). Here mj represents the mass of the
jth condensate. According to standard theory, the non-
linearity coefficients Vjj are proportional to the scattering
lengths aj via Vjj = 4π�aj/mj , while the coupling co-
efficients Vjl are related to the mutual interaction scat-
tering lengths ajl via Vjl = 2π�ajl/mjl, where mjl =
mjml/(mj + ml) is the reduced mass. The (linear) last
terms in each equation involve the chemical potential
µj , which corresponds to a ground state of the conden-
sate, in a simplified model. These terms may readily be
eliminated via a simple phase-shift transformation, viz.
ψj = ψ′

j exp(iµjt) (j = 1, 2); this is however deliber-
ately not done at this stage, for generality. Nevertheless,
one therefore intuitively expects no major influence of
the chemical potentials on the coupled BEC dynamics (at
least for the physical problem studied here).

3 Linear stability analysis

We shall seek an equilibrium state in the form ψj =
ψj0 exp[iϕj(t)], where ψj0 is a (constant real) amplitude
and ϕj(t) is a (real) phase, into the CGP equations (1).
We then find a monochromatic (fixed-frequency) Stokes’
wave solution in the form: ϕj(t) = Ωj0t, where

Ωj0 = −Vjj

�
ψ2

j0 −
Vjl

�
ψ2

l0 + µj ,

for j �= l = 1, 2.
Let us consider a small perturbation around the sta-

tionary state defined above by taking ψj = (ψj0 +
εψj1) exp[iϕj(t)], where ψj1(r, t) is a complex number de-
noting the small (ε� 1) perturbation of the slowly vary-
ing modulated bosonic wave-functions (it includes both
amplitude and phase corrections), and ϕj(t) is the phasor
defined above. Substituting into equations (1) and sep-
arating into real and imaginary parts by writing ψj1 =
aj + ibj, the first order terms (in ε) yield
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∂bj
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+
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2

2mj
∇2aj − 2Vjjψ

2
j0aj − 2Vjlψj0ψl0al = 0 ,

�
∂aj

∂t
+

�
2

2mj
∇2bj = 0 , (2)

where j and l(�= j) = 1, 2 (this will be henceforth un-
derstood unless otherwise stated). Eliminating bj , these
equations yield
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]
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m1
V12|ψ10||ψ20|∇2a2 = 0 , (3)

(together with a symmetric equation, obtained by per-
muting 1↔2). We now let aj = aj0 exp[i(k · r − Ωkt)]+
complex conjugate, where k and Ωk are the wavevec-
tor and the frequency of the modulation, respectively,

viz. ∂/∂t → −iΩk and ∂/∂xn → ikn (xn ≡ {x, y, z}
for n = 1, 2, 3) i.e. ∂2/∂t2 → −Ω2

k and ∇2 → −k2.
After some algebra, we obtain the eigenvalue problem:
Ma = (�ω)2a, where a = (a1, a2)T , and the matrix ele-
ments are given by Mjj = ej(ej +2Vjj |ψj0|2) ≡ �

2Ω2
j and

Mjl = −2ejVjl|ψj0||ψl0| ≡ �
2Ω2

jl; where we have defined
ej = �

2k2/2mj. The frequency ω and the wave number k
are therefore related by the dispersion relation [10](

Ω2
k −Ω2

1

) (
Ω2

k −Ω2
2

)
= Ω4

c , (4)

where the coupling is expressed via Ω4
c = Ω2

12Ω
2
21 ≡

M12M21/�
4 in the right-hand side of equation (4). We

stress that this dispersion relation (which is independent
of the chemical potentials µj) relies on absolutely no as-
sumption on the sign or the magnitude of mj , Vjj and Vjl.

4 Modulational instability of individual BECs

In the vanishing coupling limit, i.e. for Vjl → 0, the
dispersion relation (4) gives Ωk,± = ±Ωj (j = 1, 2).
Absolute stability is ensured if Vjj > 0. On the other
hand, if Vjj < 0, a purely growing unstable mode oc-
curs (viz. Ω2

k < 0) for wavenumbers below a critical
value kj,cr = 2(mj |Vjj |)1/2|ψj0|/�. The growth rate σ =
i
√−Ω2

k attains a maximum value σmax = |Vjj ||ψj0|2/� at
k = kj,cr/

√
2.

Recalling the definitions of Vjj , we see that a re-
pulsive/attractive scattering length (i.e. positive/negative
Vjj) prescribes a stable/unstable (single) BEC behavior.
In the following, we shall see how this simple criterion for
stability (Vjj > 0) is modified by the presence of interac-
tion between the two condensates.

5 Modulational instability of coupled BECs

The dispersion relation (4) takes the form of a bi-quadratic
polynomial equation

Ω4
k − TΩ2

k +D = 0 , (5)

where T = TrM/�2 ≡ Ω2
1 + Ω2

2 and D = DetM/�4 ≡
Ω2

1Ω
2
2 −Ω2

12Ω
2
21 are related to the trace and the determi-

nant, respectively, of the matrix M. Equation (5) has the
solution

Ω2
k =

1
2
[
T ± (T 2 − 4D)1/2

]
, (6)

or

Ω2
k,± =

1
2
(Ω2

1 +Ω2
2) ± 1

2
[
(Ω2

1 −Ω2
2)2 + 4Ω4

c

]1/2
. (7)

We note that the right-hand side is real/complex if the
discriminant quantity ∆ = T 2 − 4D is positive/negative,
respectively.

Stability is ensured (for any wavenumber k) if (and
only if) both solutions Ω2

k,± are positive. This is tanta-
mount to the following requirements being satisfied simul-
taneously: T > 0, D > 0 and ∆ > 0. Since the three quan-
tities T , D and ∆ are all even order polynomials of k, one
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has to investigate three distinct polynomial inequalities.
The stepstones of the analysis will be outlined in the fol-
lowing, though trying to avoid burdening the presentation
with unnecessary details.

First, the sign of T = k2[(�2k2/4)
∑

j(1/m
2
j) +∑

j Vjj |ψj0|2/mj ] (see definitions above) depends on (the
sign of) the quantity

∑
j Vjj |ψj0|2/mj which has to be

positive for all k, in order for stability to be ensured (for
any ψj0 and k). This requires that

V11 > 0 and V22 > 0 . (8)

Otherwise, T becomes negative (viz. Ω2
k,− < 0, at least)

for k below a critical value kcr,1 =
√
K1, where K1 =

4(−∑
j Vjj |ψj0|2/mj)/[�2

∑
j(1/m

2
j)] > 0 (cf. the single

BEC criterion above); this is always possible for a suffi-
ciently large perturbation amplitude |ψ10| if, say, V11 < 0
(even if V22 > 0). Therefore, only a pair of two repulsive
type BECs can be stable; the presence of one attractive
BEC may de-stabilize its counterpart (even if the latter
would be individually stable).

Second, D = Ω2
1Ω

2
2 − Ω2

12Ω
2
21 is an 8th-order polyno-

mial in k, which can be factorized as D ∼ k4(k4 +bk2+c),
where b = 4

∑
j(mjVjj)/�2 and c = 16m1m2(V11V22 −

V12V21)|ψ10|2|ψ20|2/�4 (note that b2−4c > 0). The stabil-
ity requirements b > 0 and c > 0 (in order for D to be pos-
itive for any value of k > 0) amount to m1V11+m2V22 > 0
and

V11V22 − V12V21 > 0 , (9)

respectively. Only the latter condition for stability has to
be retained, since the former one is automatically covered
by (8) above. To be specific, solving D = 0 for k2 = K2,±,
viz. K2,± = [−b± (b2 − 4c)1/2]/2, we see that:
(i) if b < 0 < c, then 0 < K2,− < K2,+, and D < 0 for√
K2,− < k <

√
K2,+ (instability for short wavelengths);

(ii) if c < 0 (regardless of b), then K2,− < 0 < K2,+, and
D < 0 for 0 < k <

√
K2,+;

(iii) if b > 0 and c > 0, then K2,− < K2,+ < 0, so that
D > 0.
We see that this kind of instability, i.e. if the criterion (9)
is not met, is due to the mutual interaction potential Vjl

among the bosons.
Finally, the positivity of ∆ = T 2−4D = (Ω2

1 −Ω2
2)2 +

4Ω2
12Ω

2
21 is only ensured (for every value of k and |ψj0|) if

Ω2
12Ω

2
21 ∼M12M21 > 0, i.e. if

V12V21 > 0 . (10)

If this condition is not met, the solution (6) above has a
finite imaginary part, which accounts for amplitude insta-
bility due to the external perturbation. For rigour, we note
that ∆ bears the form ∆ = k4(c4k4 − c2k

2 + c0) (where
c4 > 0; the complex expressions for cn are omitted). If
∆′ ≡ c22 − 4c0c4 ∼ −V12V21 < 0, i.e. if (10) is met, then
∆ > 0 for any value of k. If ∆′ > 0, on the other hand,
denoting K3,± = [c2± (c22−4c0c4)1/2]/(2c4), we find that:
(i) stability is only ensured (since K3,− < K3,+ < 0 < k2)
if c2 < 0 < c0 (nevertheless, this condition depends on
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Fig. 1. The (square of the) growth rate γ versus the wavenum-

ber k (in units of |Vjj ||ψj,0|2/� and
√

2mj |Vjj ||ψj,0|/�, respec-
tively) for a symmetric pair of coupled unstable (Vjl < 0 for
j, l = 1, 2) BECs (upper curve) as compared to the single BEC
case (lower curve). Notice the higher (double, here) value of
the growth rate, as well as the extended instability region of
the coupled BEC pair, as compared to the single BEC case.

the perturbation amplitudes |ψj0| and may always be vi-
olated).
(ii) Again, a finite unstable wavenumber interval k ∈
(
√
K3,−,

√
K3,+) is obtained for c2 > 0 and c0 > 0.

(iii) Finally, instability will be observed for k ∈
(0,

√
K3,+) if c0 < 0 (regardless of c2).

6 Conclusions

Summarizing, we have derived a set of explicit criteria, (8)
to (10) above, which should all be satisfied in order for
a boson pair to be stable. Therefore, an interacting BEC
pair is stable only if the interaction potentials satisfy V11 >
0 and V22 > 0 and V11V22 > V12V21 > 0. If one criterion is
not met, then the perturbation frequency develops a finite
imaginary part and the solution blows up in time. A few
comments and qualitative conclusions should however be
mentioned.

First, for a symmetric stable boson pair, viz. V11 =
V22 > 0 and V12 = V21, stability is ensured if V 2

12 < V 2
11.

Second, if one BEC satisfies Vjj < 0, the pair will be
unstable: only pairs consisting of stable bosons can be
stable. Interestingly, in the case of individually unstable
BECs (viz. Vjj < 0, for j =1 or 2), the instability char-
acteristics are strongly modified. For instance, in the case
of a symmetric unstable boson pair (viz. V11 = V22 < 0
and m1 = m2), an extended unstable wavenumber region
and an enhanced growth rate can be obtained, as can be
checked via a tedious calculation; cf. Figure 1. Further-
more, we have pointed out the appearance of secondary
instability “windows”, i.e. unstable wave number intervals
beyond (kcr, k

′
cr), where kcr �= 0.

These results above follow from a set of explicit stabil-
ity criteria. Both BECs were assumed to lie in the ground
state, for simplicity, although no other assumption was
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made on the sign and/or magnitude of the relevant physi-
cal parameters. Naturally, a future extension of this work
should consider the external confinement potential, im-
posed on the trapped condensates. Our results can be
tested, and can hopefully be confirmed, by designed ex-
periments.
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